Chemical Data Assimilation—An Overview ‡
نویسندگان
چکیده
Chemical data assimilation is the process by which models use measurements to produce an optimal representation of the chemical composition of the atmosphere. Leveraging advances in algorithms and increases in the available computational power, the integration of numerical predictions and observations has started to play an important role in air quality modeling. This paper gives an overview of several methodologies used in chemical data assimilation. We discuss the Bayesian framework for developing data assimilation systems, the suboptimal and the ensemble Kalman filter approaches, the optimal interpolation (OI), and the three and four dimensional variational methods. Examples of assimilation real observations with CMAQ model are presented.
منابع مشابه
Enhanced Predictions of Tides and Surges through Data Assimilation (TECHNICAL NOTE)
The regional waters in Singapore Strait are characterized by complex hydrodynamic phenomena as a result of the combined effect of three large water bodies viz. the South China Sea, the Andaman Sea, and the Java Sea. This leads to anomalies in water levels and generates residual currents. Numerical hydrodynamic models are generally used for predicting water levels in the ocean and seas. But thei...
متن کاملEnsemble-based Chemical Data Assimilation II: Covariance Localization
Data assimilation is the process of integrating observational data and model predictions to obtain an optimal representation of the state of the atmosphere. As more chemical observations in the troposphere are becoming available, chemical data assimilation is expected to play an essential role in air quality forecasting, similar to the role it has in numerical weather prediction. Considerable p...
متن کاملEnsemble-based Chemical Data Assimilation I: General Approach
Data assimilation is the process of integrating observational data and model predictions to obtain an optimal representation of the state of the atmosphere. As more chemical observations in the troposphere are becoming available, chemical data assimilation is expected to play an essential role in air quality forecasting, similar to the role it has in numerical weather prediction. Considerable p...
متن کاملData assimilation of stratospheric constituents: a review
The data assimilation of stratospheric constituents is reviewed. Several data assimilation methods are introduced, with particular consideration to their application to stratospheric constituent measurements. Differences from meteorological data assimilation are outlined. Historically, two approaches have been used to carry out constituent assimilation. One approach has carried constituent assi...
متن کاملChemical Data Assimilation for Air Quality Forecasting
Unlike the typical design of data assimilation for numerical weather forecasting, initial value optimisation by chemical data assimilation for air quality simulations were often considered as unessential, as errors in initial values were regarded as of vanishing impact. Rather, air surface interactions, especially emissions are a driving forcing factor, while, at the same time, of insufficient ...
متن کامل